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By John R. Henry
SUMMARY

One-dimensional, steady-state, compressible, viscous flow relations
are presented which permit the determination of flow conditions at any
radisl position in a ducted helicopter blade. The relations are required
for estimating the performance of proposed helicopter jet-propulsion
systems which involve ducting air or gases through the blade from root
to tip. A limited number of calculations over a wide range of helicopter
operating conditions and relative duct slzes are also presented. The
"choking" problem in the straight duct is discussed.

INTRODUCTION

The use of Jet engines as propulsive units for helicopters is being"
investigated by many agencies. Several different power-plant configura-
tions are under consideration, including those which require the ducting
of air or gases through the length of the helicopter blade. Analytical
relations are presented herein for evaluating the conditions of the ducted
flow at any point of its travel from the blede root to the tip. Such
information is required in order to determine limiting quantities of flow,
optimm duct sizes, overall losses, and flow properties (i.e., static
pressure, stagnation pressure, and Mach number) of the gases delivered
to an engine unit at the blade tip.

In subsonic ducted flow the action of wall friction and turbulence
losses in producing decreasing density and increasing Mach number is well
known and has been described adequately in the literature (e.g., ref. 1).
The limit to this action is the attainment of a Mach number of unity or
the "choking" condition. The choking problem may require careful con-
sideration in the design of ducted helicopter blades because the passage
length relative to the passage diameter necessarily will be large and the
entering Mach number may be in the high subsonic range.

The effect on the ducted flow of the centrifugal compression due to
the blade rotation will be to raise the density and lower the Mach number,
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and thus counteract the effect of friction. The net effect of the two
opposed actions will depend on the particular combination of flow con-
ditions, duct geometry, end helicopter operating conditions and must be
evaluated for each combination.

. The analysis presented herein is limited to steady-state, one-
dimensional, compressible, viscous flow and applies only to straight
ducting.

SYMBOLS
A duct cross-sectional area, ££2
a speed of sound, fps
B rotation parameter, MR?(Q)Z To
R Tt
Cp specific heat at constant pressure, Btu/lb/OF
Cvyr specific heat at constant volume, Btu/lb/OF
D duct hydraulic dismeter, — A
Perimeter
f friction factor from reference 2
g acceleration due to gravity, ft/sec?®
J Joule's constant, 778 ft-1b/Btu
M duct-flow Mach number
Mg rotor tip Mach number, QR/ag
Pt duct-flow stagnation pressure, 1b/ft2 abs
P duct-flow static pressure, l'b/ft2 abs
r radial distance from center of hub to blade element, ft
R blade radius, ft

Nge Reynolds number of ducted flow at station 1, p VD /iy
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static temperature, °R

Ty duct-flow stagnation temperature, ©R

\' duct-flow velocity, fps

X ratio of blade-element radius to rotor-blade radius,
Y ratio of specific heats, cp/cv

p mass density, Ib-secz/ftu

Q rotor angular velocity, radians/sec

" coefficient of viscosity, lb-sec/ft2

V¥, (M) Mach number function for heat term

Y, (M) Mech number function for friction term

Vo (M) Mach number function for centrifugal-force term
Yg (M) Mach number function for area-change term
Subscripts:

0 atmospheric

1 duct station at hub center

2 duct station at rotor tip

b4 any radisl station

ANATYSIS

r/R

For steady-state, one-dimensional, compressible, viscous, ducted

flow subjected to a centrifugal force in the flow direction, as in flow
through the length of a helicopter blade, the rate of change of momentum
of a mass segment of the flow may be set equal to the algebraic sum of
the forces on the segment (Newton's second law of motion) as follows:
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Equation (1) assumes a constant molecular weight and specific heat, no
drag-producing bodies in the stream, and no changes in mass flow rate.
On the right-hend side of the equation, the first term represents the
pressure force, the second, the friction force, the third, the centrif-
ugal force due to the duct or blade rotation, and the fourth, the pres-~
sure force due to a change in aresa.

Equation (1) may be converted into terms of stagnation temperature
and Mach number through use of the following: the continuity relation;
the perfect-gas law; and the expression relating stagnation temperature,
static temperature, and Mach number.

The converted equation is as follows:

M(l+7M2)(l+7_lM2>th 27fM3(1+7élM2>

27 (1 - ¥°) T p1 - M2
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A
Ty (2)

A study of reference 3 will show that equation (2) is equivalent to equa-
tion [}g] of that reference except for terms which the previously enu-

merated assumptions eliminate and the centrifugel-force term which was
not considered in reference 3.

Equation (2) mey be nondimensionalized and expressed in terms of
a rotation parameter B as follows:

arT.
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where
2 7y - 1.2
Vg, (M) =M(l+ 7M)<l+ M) (3b)
2(1 - M2)
3 Y-l
() = - (ll+_ MS ) (3c)
2
M+ L5 8)
Y, (M) = — (3d)
B = Mg 9)2(% (30)
and
Vg (M) = ?ﬁ—) (3£)

The solution of equation (3a) requires the use of additional rela-
tions such as expressions for the duct-flow stagnation temperature and
the duct cross-sectional area in terms of radial position in the duet r
or the differential equations thereof. Such an expression for the stagna-
tion temperature would permit the evaluation of the first term on the
right-hand side of equation (3a), which may be classified as a heat term.
The exact nature of such an expression depends on many design details and
on flow and operating conditions, and its detailed analysis is beyond the
scope of this paper. A few general remarks, however, are in order.

The influence of the heat term would be to increase the Mach number
if heat were added and to decrease the Mach number if heat were transferred
from the ducted flow. Heat would be added to the flow if the blade duct
were used as & combustion chamber, in which case the relation of stagna-
tion temperature to duct length would be a function principally of the
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space rate of combustion and assoclated parameters. A certalin amount of
heat transfer from the flow will generally occur with or without combus-
tion because the ducted-flow temperature will be higher than the local
stagnation-temperature recovery on the external blade surface if it is
assumed that the ducted flow is compressed mechanically before it enters
the blede duct. At any station in the duct the amount of heat transfer,
and thus the temperature of the ducted flow, would depend on the heat-
transfer coefficient, the stagnation-temperature recovery of the ducted
flow, and the stagnation-temperature recovery on the external surface of
the blade. The heat-transfer coefficient would be determined to a large
extent by the blade and blade-duct design.

The second term on the right-hand side of equation (3a) accounts for
wall friction effects and would tend to increase the Mach number. The
friction factor f is a function of Reynolds number and the degree of

roughness of the duct surface. In the Reynolds number range of 106 to

107, the data of reference 2 indicate that the following empirical rela-
tions apply:

For commercial pipes (steel, cast iron),

.- 0.0247
B 0.141

e
For smooth surface (glass, copper, drawn tubing),

0.153%
NRe

These relations indicate that at a given Reynolds number the friction
factor for rough surfaces is about 30 to 40 percent greater than for

smooth surfaces. Increasing the Reynolds number from 106 to 107 produces
about the same percentage decrease in the friction factor. It is shown
in a subsequent section that changes of these magnitudes in friction-
factor values do not affect the solution of equation (3a) appreciably.

The third term of equation (3a) accounts for the influence of the
blade rotation, which is to compress the gas and reduce the Mach number.
The term contains a rotation parameter B, defined by equation (3e), which
Involves the rotor tip Mach number, the ratio of duct hydraulic diameter
to blade radius, and the ratio of atmospheric temperature to the duct-
flow stagnation temperature. It will be noted that the definition of
rotor tip Mach number,
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Mg = & (1)

depends only on the tip speed due to rotation and the atmospheric speed
of sound.

The fourth term in equation (3a) accounts for the effects on Mach
number of changes in cross-sectional area and is determined by the duct
geometry.

Equations (3a) to (3f) provide a means for obtaining the Mach num-
ber variation along the blade duct. The relations used in converting
equation (1) to equation (2) may be combined to provide an expression
for the static-pressure ratio across a length of duct:

Y- 1lyo2
PL_Mp B R S 1Tt1 (5)

P2 My A 147 ; - M;2 Tep

Equation (5) may be converted to an equation for stagnation-pressure
ratio through use of the relation between static pressure, stagnation
pressure, and Mach number to produce

¥y 7+1
-1 2(7-1)
y -1 2\ r-1lye
1+ ~——M
Py nffT T M) Myt M T )

55' -1 M A -1 T

Tt is of interest to note that for adiebatic flow in & constant-
area duct not subjected to centrifugel forces, the first, third, and
fourth terms on the right-hand side of equation (3a) are eliminated.
The resulting equation can be integrated to give

2
) M; 2 e(7+l)M12
M2 S L o= m? 1)
1412y 27 ysz

My
e7+l D




8 NACA TN 3089

Equation (7) represents an end condition for the helicopter blade-duct
performance in which the rotational speed has been reduced to zero, and
is of use in obtaining an overall view Of the effect of the blade rotation.

NUMERTCAT, CALCULATIONS

In order to obtain a better understanding and a graphic view of the
golution expressed in equation (3a), a few numericel evalustions were
made which were directed toward investigating the choking problem. The
calculations were limited for simplicity to the case of adiabatic flow
in a constant-area duct. The limitation to adiabatic flow is justified
on the basis that heat transfer from the flow would tend to decrease the
Mach number and thereby prevent choking, so that the adiabatic-flow case
is conservative in this respect, and heat addition in the blade duct
(combustion) is not believed to be a strong possibility.

The calculations were based on assumed values of the rotation param-
eter B (see eq. (3e)) of 0, 0.0002, 0.0007, and 0.0014. The value of O.001L
corresponds to a ratio of blade radius to duct diameter R/D of 26.7 for
a rotor tip Mach number Mg of unity and a temperature ratio Tq/Tt of

unity. These conditions are representative of an estimated maximum prac-
tical value of B or an estimated minimm practical value of R/D. A
zero velue of B corresponds to the other extreme of no rotational speed
or infinite blade radius relative to the duct diameter. For adiasbatic
flow and no rotational speed, equation (7) is applicable.

For each assumed value of B, equation (3a) was evaluasted for adia-
batic flow for duct-inlet Mach numbers (at the hub center) of 0.3, 0.6,

and 0.8 at an inlet Reynolds number of 107, The value of the friction
factor f was taken from reference 2 and corresponded to commercial
cast-iron pipe. The rough-surface friction factor was chosen in order
to obtain a conservative answer relative to choking.

The adisbatic, constant-duct-area version of equation (3a) was
evaluated numerically by a step-by-step integration process to obtain
finite changes in Mach number for a series of values of A(r/D). The
values of the Mach number functions of equations (3c) and (3d) were
teken from precalculated curves presented in figure 1. A curve of equa-
tion (3b) has also been included in figure 1. In the Mach number range
from O.4 to 1.0 the reciprocal of the Mach number functions is presented
to avoid having the ordinate approach infinity near a Mach number of 1.0.

The changeé in Mach number in the blade duct were determined in
increments of length equal to 4 duct diemeters until a total duct length
equal to 32 diameters was reached. The increment of length equal to
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4t dismeters was found to be small enough so that the Mach number could
be calculated with an error less than 0.5 percent. In order to obtain
these accuracies, however, it was necessary to base the calculation of
the Mach number change across a given increment on the Mach number at
the center of the increment as predicted from the change in Mach number
across the preceding increment. After completing the calculation for a
given increment it was necessary, for the first 8 diameters of duct
length, to repeat the calculation on the basis of a corrected estimate
of Mach number at the center of the increment.

RESULTS

The variation of duct-flow Mach number, as obtained by these proce-
dures, 1s presented in figure 2. For the cases corresponding to the higher
values of rotation parameter (B = 0.0007 and 0.001%) the centrifugal effects
more than compensated for the friction effects, so that substantial decreases
in Mach number occurred through the length of the duct. This result was
obtained even at an inlet Mach number of 0.8, for which the gtationary-
blade curve (B = 0) indicates choking or a Mach number of 1.0 at a duct
length of 7.8 diameters. For an inlet Mach number of 0.8, a value of B
of 0.0002 produced a Mach number of 1.0 at a length of 10.3 diameters;
however, a value of B of 0.000% did not produce a choking condition
and resulted in a net decrease in Mach number over the blade length.

The curves of figure 2 specify the Mach number variation in the
blade duct for given values of the parameter B, inlet Mach number, and
inlet Reynolds number. These inlet conditions, however, would actually
be determined by compressor operating point, nozzle-exit area, and other
factors. Therefore, in order to change the inlet conditions or move
from one group of curves to another in figure 2, a change in one or more
of these factors is implied.

The influence of Reynolds number or friction factor on the Mach num-
ber was investigated briefly. Calculations were made for B = 0.0007 at

a Reynolds number of 106 in order to compare with results for the value

of 107 of figure 2. Reducing the Reynolds number to 106 is equivalent
to increasing the friction factor about 40 percent and resulted in a
3-percent increase in the Mach number. This relatively small influence
of Reynolds number justifies ignoring small changes in Reynolds number
in calculating the flow along the blade duct.

The Mach number at a duct length of 30 diameters as a function of
inlet Mach number is presented in figure 3, which 1s a cross plot of
figure 2. The effect of the rotation parameter B on the duct exit Mach
nunber is clearly illustrated. An approximate choke line intersecting
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each B curve has been drawn in figure 3 by fairing through points corre-
sponding to choking at some location in the duct. The line was faired
through a point for B = O calculated from equation (7), through a point
for B = 0.0003 determined by cross plots of figure 2, and asymptotic

to the verticel at an inlet Mach number of 1.0, according to the reasoning
that as the rotation parameter approaches large values the inlet Mach num-
ber must approach 1.0 in order to obtain choking. The choke line repre-
sents a locus of the minimm values of inlet Mach number for which a Mach
number of 1.0 can be obtained at some location within the 30-diameter

duct length. As the rotation parameter is increased from a value of

zero, the radial location at which a Mach number of 1.0 will occur moves
from the 30-diameter location upstream toward the hub, and the minimum
inlet Mach number increases from a value of 0.657 and approaches 1.0.

If the duct length were increased, the minimm inlet Mach number for
choking when B = 0 would decrease according to equation (7).

The stagnation-pressure and static-pressure ratios over the 30-diameter
length are presented in figure 4, which was obtained through use of equa-
tions (5) and (6) and the Mach number values of figure 3. The intercepts
of the pressure-ratio curves on the ordinate axis are indicative of the
pressure difference over the blade length due to centrifugal force with
no internal air flow and were calculated from the expression

7B
Pte _ P2 _ 2(0/r)?
P‘tl el

which was obtalned by integrating analytically between stations 1 and 2
the expression for the centrifugal force on an increment of gas mass.
With values of rotation parameter B of 0.0007 and 0.00lk, stagnation-
pressure ratios of 1.55 and 2.41 were obtained with no flow, and the
stagnation-pressure ratio decreased slightly with increasing inlet Mach
number because of increasing friction losses. The increasing divergence
of the curves for static-pressure ratio and stagnation-pressure ratio
with increasing inlet Mach number is a result of the increasing differ-
ence between inlet and exit Mach numbers. (See fig. 3.)

CONCLUDING REMARKS

The differential equation presented for steady-state, one-dimensional,
compressible, viscous flow was used in a step-by-step integration process
to determine the Mach number changes for adiaebatic flow in a ducted heli-
copter blade over a wide range of helicopter operating conditions and
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relative duct sizes. With adiabatic flow in a constant-ares duect 30 diam-
eters in length, & Mach number of 1.0 will not be attained for inlet Mach
numbers of less than 0.657, which corresponds to the case of no blade
rotation. As the duct length increases, this value of minimm inlet Mach
number for choking will decrease. For a given duct length, as the rota-
tion parameter increases, the minimm inlet Mach number for choking
increases, and the choking point moves toward the inlet end of the duct.

The maximm pressure ratio across a length of duet occurs with no
flow. The stagnation-pressure ratio decreases with increasing inlet
Mach number because of increasing friction losses. For the range of
rotation parameters assumed, a maximm stagnation-pressure ratio of 2.41

across a 30-diameter duct length was calculated for the adigbatic-flow
case.

A change by a factor of 10 in the duct-flow Reynolds number, which
determines the friction factor and friction losses, produced only a
5-percent change in the calculated duct-flow Mach number for the adiabatic-
flow case with a moderate value of the blade rotation parameter.

Langley Aeronautical ILaborsatory,
National Advisory Committee for Aeronautics,
Langley Field, Va., October 5, 1953.
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